metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.7D14, C23.5Dic14, (C2×C28).50D4, C2.5(C28⋊D4), (C2×Dic7).55D4, (C22×C4).29D14, C22.239(D4×D7), (C22×C14).13Q8, C14.11(C4⋊1D4), C7⋊2(C23.4Q8), C14.57(C22⋊Q8), C14.C42⋊29C2, C2.8(C28.48D4), C22.96(C4○D28), (C22×C28).58C22, (C23×C14).32C22, C22.46(C2×Dic14), C23.368(C22×D7), C2.20(D14.D4), C22.94(D4⋊2D7), (C22×C14).324C23, C2.22(C22⋊Dic14), C14.29(C22.D4), C2.6(C23.18D14), (C22×Dic7).40C22, (C2×C4⋊Dic7)⋊9C2, (C2×Dic7⋊C4)⋊9C2, (C2×C14).34(C2×Q8), (C2×C14).318(C2×D4), (C2×C4).29(C7⋊D4), (C2×C22⋊C4).12D7, (C2×C14).78(C4○D4), (C14×C22⋊C4).14C2, C22.124(C2×C7⋊D4), (C2×C23.D7).11C2, SmallGroup(448,483)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.7D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=dc=cd, f2=c, ab=ba, ac=ca, eae-1=ad=da, faf-1=abd, bc=cb, bd=db, be=eb, bf=fb, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde13 >
Subgroups: 756 in 186 conjugacy classes, 63 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C23, C23, C14, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C23.4Q8, Dic7⋊C4, C4⋊Dic7, C23.D7, C7×C22⋊C4, C22×Dic7, C22×C28, C23×C14, C14.C42, C2×Dic7⋊C4, C2×C4⋊Dic7, C2×C23.D7, C14×C22⋊C4, C24.7D14
Quotients: C1, C2, C22, D4, Q8, C23, D7, C2×D4, C2×Q8, C4○D4, D14, C22⋊Q8, C22.D4, C4⋊1D4, Dic14, C7⋊D4, C22×D7, C23.4Q8, C2×Dic14, C4○D28, D4×D7, D4⋊2D7, C2×C7⋊D4, C22⋊Dic14, D14.D4, C28.48D4, C23.18D14, C28⋊D4, C24.7D14
(2 66)(4 68)(6 70)(8 72)(10 74)(12 76)(14 78)(16 80)(18 82)(20 84)(22 58)(24 60)(26 62)(28 64)(29 193)(30 102)(31 195)(32 104)(33 169)(34 106)(35 171)(36 108)(37 173)(38 110)(39 175)(40 112)(41 177)(42 86)(43 179)(44 88)(45 181)(46 90)(47 183)(48 92)(49 185)(50 94)(51 187)(52 96)(53 189)(54 98)(55 191)(56 100)(85 153)(87 155)(89 157)(91 159)(93 161)(95 163)(97 165)(99 167)(101 141)(103 143)(105 145)(107 147)(109 149)(111 151)(114 212)(116 214)(118 216)(120 218)(122 220)(124 222)(126 224)(128 198)(130 200)(132 202)(134 204)(136 206)(138 208)(140 210)(142 194)(144 196)(146 170)(148 172)(150 174)(152 176)(154 178)(156 180)(158 182)(160 184)(162 186)(164 188)(166 190)(168 192)
(1 119)(2 120)(3 121)(4 122)(5 123)(6 124)(7 125)(8 126)(9 127)(10 128)(11 129)(12 130)(13 131)(14 132)(15 133)(16 134)(17 135)(18 136)(19 137)(20 138)(21 139)(22 140)(23 113)(24 114)(25 115)(26 116)(27 117)(28 118)(29 193)(30 194)(31 195)(32 196)(33 169)(34 170)(35 171)(36 172)(37 173)(38 174)(39 175)(40 176)(41 177)(42 178)(43 179)(44 180)(45 181)(46 182)(47 183)(48 184)(49 185)(50 186)(51 187)(52 188)(53 189)(54 190)(55 191)(56 192)(57 209)(58 210)(59 211)(60 212)(61 213)(62 214)(63 215)(64 216)(65 217)(66 218)(67 219)(68 220)(69 221)(70 222)(71 223)(72 224)(73 197)(74 198)(75 199)(76 200)(77 201)(78 202)(79 203)(80 204)(81 205)(82 206)(83 207)(84 208)(85 153)(86 154)(87 155)(88 156)(89 157)(90 158)(91 159)(92 160)(93 161)(94 162)(95 163)(96 164)(97 165)(98 166)(99 167)(100 168)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)
(1 79)(2 80)(3 81)(4 82)(5 83)(6 84)(7 57)(8 58)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 65)(16 66)(17 67)(18 68)(19 69)(20 70)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 155)(30 156)(31 157)(32 158)(33 159)(34 160)(35 161)(36 162)(37 163)(38 164)(39 165)(40 166)(41 167)(42 168)(43 141)(44 142)(45 143)(46 144)(47 145)(48 146)(49 147)(50 148)(51 149)(52 150)(53 151)(54 152)(55 153)(56 154)(85 191)(86 192)(87 193)(88 194)(89 195)(90 196)(91 169)(92 170)(93 171)(94 172)(95 173)(96 174)(97 175)(98 176)(99 177)(100 178)(101 179)(102 180)(103 181)(104 182)(105 183)(106 184)(107 185)(108 186)(109 187)(110 188)(111 189)(112 190)(113 197)(114 198)(115 199)(116 200)(117 201)(118 202)(119 203)(120 204)(121 205)(122 206)(123 207)(124 208)(125 209)(126 210)(127 211)(128 212)(129 213)(130 214)(131 215)(132 216)(133 217)(134 218)(135 219)(136 220)(137 221)(138 222)(139 223)(140 224)
(1 65)(2 66)(3 67)(4 68)(5 69)(6 70)(7 71)(8 72)(9 73)(10 74)(11 75)(12 76)(13 77)(14 78)(15 79)(16 80)(17 81)(18 82)(19 83)(20 84)(21 57)(22 58)(23 59)(24 60)(25 61)(26 62)(27 63)(28 64)(29 141)(30 142)(31 143)(32 144)(33 145)(34 146)(35 147)(36 148)(37 149)(38 150)(39 151)(40 152)(41 153)(42 154)(43 155)(44 156)(45 157)(46 158)(47 159)(48 160)(49 161)(50 162)(51 163)(52 164)(53 165)(54 166)(55 167)(56 168)(85 177)(86 178)(87 179)(88 180)(89 181)(90 182)(91 183)(92 184)(93 185)(94 186)(95 187)(96 188)(97 189)(98 190)(99 191)(100 192)(101 193)(102 194)(103 195)(104 196)(105 169)(106 170)(107 171)(108 172)(109 173)(110 174)(111 175)(112 176)(113 211)(114 212)(115 213)(116 214)(117 215)(118 216)(119 217)(120 218)(121 219)(122 220)(123 221)(124 222)(125 223)(126 224)(127 197)(128 198)(129 199)(130 200)(131 201)(132 202)(133 203)(134 204)(135 205)(136 206)(137 207)(138 208)(139 209)(140 210)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 94 79 172)(2 93 80 171)(3 92 81 170)(4 91 82 169)(5 90 83 196)(6 89 84 195)(7 88 57 194)(8 87 58 193)(9 86 59 192)(10 85 60 191)(11 112 61 190)(12 111 62 189)(13 110 63 188)(14 109 64 187)(15 108 65 186)(16 107 66 185)(17 106 67 184)(18 105 68 183)(19 104 69 182)(20 103 70 181)(21 102 71 180)(22 101 72 179)(23 100 73 178)(24 99 74 177)(25 98 75 176)(26 97 76 175)(27 96 77 174)(28 95 78 173)(29 126 155 210)(30 125 156 209)(31 124 157 208)(32 123 158 207)(33 122 159 206)(34 121 160 205)(35 120 161 204)(36 119 162 203)(37 118 163 202)(38 117 164 201)(39 116 165 200)(40 115 166 199)(41 114 167 198)(42 113 168 197)(43 140 141 224)(44 139 142 223)(45 138 143 222)(46 137 144 221)(47 136 145 220)(48 135 146 219)(49 134 147 218)(50 133 148 217)(51 132 149 216)(52 131 150 215)(53 130 151 214)(54 129 152 213)(55 128 153 212)(56 127 154 211)
G:=sub<Sym(224)| (2,66)(4,68)(6,70)(8,72)(10,74)(12,76)(14,78)(16,80)(18,82)(20,84)(22,58)(24,60)(26,62)(28,64)(29,193)(30,102)(31,195)(32,104)(33,169)(34,106)(35,171)(36,108)(37,173)(38,110)(39,175)(40,112)(41,177)(42,86)(43,179)(44,88)(45,181)(46,90)(47,183)(48,92)(49,185)(50,94)(51,187)(52,96)(53,189)(54,98)(55,191)(56,100)(85,153)(87,155)(89,157)(91,159)(93,161)(95,163)(97,165)(99,167)(101,141)(103,143)(105,145)(107,147)(109,149)(111,151)(114,212)(116,214)(118,216)(120,218)(122,220)(124,222)(126,224)(128,198)(130,200)(132,202)(134,204)(136,206)(138,208)(140,210)(142,194)(144,196)(146,170)(148,172)(150,174)(152,176)(154,178)(156,180)(158,182)(160,184)(162,186)(164,188)(166,190)(168,192), (1,119)(2,120)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,139)(22,140)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,193)(30,194)(31,195)(32,196)(33,169)(34,170)(35,171)(36,172)(37,173)(38,174)(39,175)(40,176)(41,177)(42,178)(43,179)(44,180)(45,181)(46,182)(47,183)(48,184)(49,185)(50,186)(51,187)(52,188)(53,189)(54,190)(55,191)(56,192)(57,209)(58,210)(59,211)(60,212)(61,213)(62,214)(63,215)(64,216)(65,217)(66,218)(67,219)(68,220)(69,221)(70,222)(71,223)(72,224)(73,197)(74,198)(75,199)(76,200)(77,201)(78,202)(79,203)(80,204)(81,205)(82,206)(83,207)(84,208)(85,153)(86,154)(87,155)(88,156)(89,157)(90,158)(91,159)(92,160)(93,161)(94,162)(95,163)(96,164)(97,165)(98,166)(99,167)(100,168)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152), (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,155)(30,156)(31,157)(32,158)(33,159)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,166)(41,167)(42,168)(43,141)(44,142)(45,143)(46,144)(47,145)(48,146)(49,147)(50,148)(51,149)(52,150)(53,151)(54,152)(55,153)(56,154)(85,191)(86,192)(87,193)(88,194)(89,195)(90,196)(91,169)(92,170)(93,171)(94,172)(95,173)(96,174)(97,175)(98,176)(99,177)(100,178)(101,179)(102,180)(103,181)(104,182)(105,183)(106,184)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190)(113,197)(114,198)(115,199)(116,200)(117,201)(118,202)(119,203)(120,204)(121,205)(122,206)(123,207)(124,208)(125,209)(126,210)(127,211)(128,212)(129,213)(130,214)(131,215)(132,216)(133,217)(134,218)(135,219)(136,220)(137,221)(138,222)(139,223)(140,224), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,148)(37,149)(38,150)(39,151)(40,152)(41,153)(42,154)(43,155)(44,156)(45,157)(46,158)(47,159)(48,160)(49,161)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,189)(98,190)(99,191)(100,192)(101,193)(102,194)(103,195)(104,196)(105,169)(106,170)(107,171)(108,172)(109,173)(110,174)(111,175)(112,176)(113,211)(114,212)(115,213)(116,214)(117,215)(118,216)(119,217)(120,218)(121,219)(122,220)(123,221)(124,222)(125,223)(126,224)(127,197)(128,198)(129,199)(130,200)(131,201)(132,202)(133,203)(134,204)(135,205)(136,206)(137,207)(138,208)(139,209)(140,210), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,94,79,172)(2,93,80,171)(3,92,81,170)(4,91,82,169)(5,90,83,196)(6,89,84,195)(7,88,57,194)(8,87,58,193)(9,86,59,192)(10,85,60,191)(11,112,61,190)(12,111,62,189)(13,110,63,188)(14,109,64,187)(15,108,65,186)(16,107,66,185)(17,106,67,184)(18,105,68,183)(19,104,69,182)(20,103,70,181)(21,102,71,180)(22,101,72,179)(23,100,73,178)(24,99,74,177)(25,98,75,176)(26,97,76,175)(27,96,77,174)(28,95,78,173)(29,126,155,210)(30,125,156,209)(31,124,157,208)(32,123,158,207)(33,122,159,206)(34,121,160,205)(35,120,161,204)(36,119,162,203)(37,118,163,202)(38,117,164,201)(39,116,165,200)(40,115,166,199)(41,114,167,198)(42,113,168,197)(43,140,141,224)(44,139,142,223)(45,138,143,222)(46,137,144,221)(47,136,145,220)(48,135,146,219)(49,134,147,218)(50,133,148,217)(51,132,149,216)(52,131,150,215)(53,130,151,214)(54,129,152,213)(55,128,153,212)(56,127,154,211)>;
G:=Group( (2,66)(4,68)(6,70)(8,72)(10,74)(12,76)(14,78)(16,80)(18,82)(20,84)(22,58)(24,60)(26,62)(28,64)(29,193)(30,102)(31,195)(32,104)(33,169)(34,106)(35,171)(36,108)(37,173)(38,110)(39,175)(40,112)(41,177)(42,86)(43,179)(44,88)(45,181)(46,90)(47,183)(48,92)(49,185)(50,94)(51,187)(52,96)(53,189)(54,98)(55,191)(56,100)(85,153)(87,155)(89,157)(91,159)(93,161)(95,163)(97,165)(99,167)(101,141)(103,143)(105,145)(107,147)(109,149)(111,151)(114,212)(116,214)(118,216)(120,218)(122,220)(124,222)(126,224)(128,198)(130,200)(132,202)(134,204)(136,206)(138,208)(140,210)(142,194)(144,196)(146,170)(148,172)(150,174)(152,176)(154,178)(156,180)(158,182)(160,184)(162,186)(164,188)(166,190)(168,192), (1,119)(2,120)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,139)(22,140)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,193)(30,194)(31,195)(32,196)(33,169)(34,170)(35,171)(36,172)(37,173)(38,174)(39,175)(40,176)(41,177)(42,178)(43,179)(44,180)(45,181)(46,182)(47,183)(48,184)(49,185)(50,186)(51,187)(52,188)(53,189)(54,190)(55,191)(56,192)(57,209)(58,210)(59,211)(60,212)(61,213)(62,214)(63,215)(64,216)(65,217)(66,218)(67,219)(68,220)(69,221)(70,222)(71,223)(72,224)(73,197)(74,198)(75,199)(76,200)(77,201)(78,202)(79,203)(80,204)(81,205)(82,206)(83,207)(84,208)(85,153)(86,154)(87,155)(88,156)(89,157)(90,158)(91,159)(92,160)(93,161)(94,162)(95,163)(96,164)(97,165)(98,166)(99,167)(100,168)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152), (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,155)(30,156)(31,157)(32,158)(33,159)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,166)(41,167)(42,168)(43,141)(44,142)(45,143)(46,144)(47,145)(48,146)(49,147)(50,148)(51,149)(52,150)(53,151)(54,152)(55,153)(56,154)(85,191)(86,192)(87,193)(88,194)(89,195)(90,196)(91,169)(92,170)(93,171)(94,172)(95,173)(96,174)(97,175)(98,176)(99,177)(100,178)(101,179)(102,180)(103,181)(104,182)(105,183)(106,184)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190)(113,197)(114,198)(115,199)(116,200)(117,201)(118,202)(119,203)(120,204)(121,205)(122,206)(123,207)(124,208)(125,209)(126,210)(127,211)(128,212)(129,213)(130,214)(131,215)(132,216)(133,217)(134,218)(135,219)(136,220)(137,221)(138,222)(139,223)(140,224), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,148)(37,149)(38,150)(39,151)(40,152)(41,153)(42,154)(43,155)(44,156)(45,157)(46,158)(47,159)(48,160)(49,161)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,189)(98,190)(99,191)(100,192)(101,193)(102,194)(103,195)(104,196)(105,169)(106,170)(107,171)(108,172)(109,173)(110,174)(111,175)(112,176)(113,211)(114,212)(115,213)(116,214)(117,215)(118,216)(119,217)(120,218)(121,219)(122,220)(123,221)(124,222)(125,223)(126,224)(127,197)(128,198)(129,199)(130,200)(131,201)(132,202)(133,203)(134,204)(135,205)(136,206)(137,207)(138,208)(139,209)(140,210), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,94,79,172)(2,93,80,171)(3,92,81,170)(4,91,82,169)(5,90,83,196)(6,89,84,195)(7,88,57,194)(8,87,58,193)(9,86,59,192)(10,85,60,191)(11,112,61,190)(12,111,62,189)(13,110,63,188)(14,109,64,187)(15,108,65,186)(16,107,66,185)(17,106,67,184)(18,105,68,183)(19,104,69,182)(20,103,70,181)(21,102,71,180)(22,101,72,179)(23,100,73,178)(24,99,74,177)(25,98,75,176)(26,97,76,175)(27,96,77,174)(28,95,78,173)(29,126,155,210)(30,125,156,209)(31,124,157,208)(32,123,158,207)(33,122,159,206)(34,121,160,205)(35,120,161,204)(36,119,162,203)(37,118,163,202)(38,117,164,201)(39,116,165,200)(40,115,166,199)(41,114,167,198)(42,113,168,197)(43,140,141,224)(44,139,142,223)(45,138,143,222)(46,137,144,221)(47,136,145,220)(48,135,146,219)(49,134,147,218)(50,133,148,217)(51,132,149,216)(52,131,150,215)(53,130,151,214)(54,129,152,213)(55,128,153,212)(56,127,154,211) );
G=PermutationGroup([[(2,66),(4,68),(6,70),(8,72),(10,74),(12,76),(14,78),(16,80),(18,82),(20,84),(22,58),(24,60),(26,62),(28,64),(29,193),(30,102),(31,195),(32,104),(33,169),(34,106),(35,171),(36,108),(37,173),(38,110),(39,175),(40,112),(41,177),(42,86),(43,179),(44,88),(45,181),(46,90),(47,183),(48,92),(49,185),(50,94),(51,187),(52,96),(53,189),(54,98),(55,191),(56,100),(85,153),(87,155),(89,157),(91,159),(93,161),(95,163),(97,165),(99,167),(101,141),(103,143),(105,145),(107,147),(109,149),(111,151),(114,212),(116,214),(118,216),(120,218),(122,220),(124,222),(126,224),(128,198),(130,200),(132,202),(134,204),(136,206),(138,208),(140,210),(142,194),(144,196),(146,170),(148,172),(150,174),(152,176),(154,178),(156,180),(158,182),(160,184),(162,186),(164,188),(166,190),(168,192)], [(1,119),(2,120),(3,121),(4,122),(5,123),(6,124),(7,125),(8,126),(9,127),(10,128),(11,129),(12,130),(13,131),(14,132),(15,133),(16,134),(17,135),(18,136),(19,137),(20,138),(21,139),(22,140),(23,113),(24,114),(25,115),(26,116),(27,117),(28,118),(29,193),(30,194),(31,195),(32,196),(33,169),(34,170),(35,171),(36,172),(37,173),(38,174),(39,175),(40,176),(41,177),(42,178),(43,179),(44,180),(45,181),(46,182),(47,183),(48,184),(49,185),(50,186),(51,187),(52,188),(53,189),(54,190),(55,191),(56,192),(57,209),(58,210),(59,211),(60,212),(61,213),(62,214),(63,215),(64,216),(65,217),(66,218),(67,219),(68,220),(69,221),(70,222),(71,223),(72,224),(73,197),(74,198),(75,199),(76,200),(77,201),(78,202),(79,203),(80,204),(81,205),(82,206),(83,207),(84,208),(85,153),(86,154),(87,155),(88,156),(89,157),(90,158),(91,159),(92,160),(93,161),(94,162),(95,163),(96,164),(97,165),(98,166),(99,167),(100,168),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152)], [(1,79),(2,80),(3,81),(4,82),(5,83),(6,84),(7,57),(8,58),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,65),(16,66),(17,67),(18,68),(19,69),(20,70),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,155),(30,156),(31,157),(32,158),(33,159),(34,160),(35,161),(36,162),(37,163),(38,164),(39,165),(40,166),(41,167),(42,168),(43,141),(44,142),(45,143),(46,144),(47,145),(48,146),(49,147),(50,148),(51,149),(52,150),(53,151),(54,152),(55,153),(56,154),(85,191),(86,192),(87,193),(88,194),(89,195),(90,196),(91,169),(92,170),(93,171),(94,172),(95,173),(96,174),(97,175),(98,176),(99,177),(100,178),(101,179),(102,180),(103,181),(104,182),(105,183),(106,184),(107,185),(108,186),(109,187),(110,188),(111,189),(112,190),(113,197),(114,198),(115,199),(116,200),(117,201),(118,202),(119,203),(120,204),(121,205),(122,206),(123,207),(124,208),(125,209),(126,210),(127,211),(128,212),(129,213),(130,214),(131,215),(132,216),(133,217),(134,218),(135,219),(136,220),(137,221),(138,222),(139,223),(140,224)], [(1,65),(2,66),(3,67),(4,68),(5,69),(6,70),(7,71),(8,72),(9,73),(10,74),(11,75),(12,76),(13,77),(14,78),(15,79),(16,80),(17,81),(18,82),(19,83),(20,84),(21,57),(22,58),(23,59),(24,60),(25,61),(26,62),(27,63),(28,64),(29,141),(30,142),(31,143),(32,144),(33,145),(34,146),(35,147),(36,148),(37,149),(38,150),(39,151),(40,152),(41,153),(42,154),(43,155),(44,156),(45,157),(46,158),(47,159),(48,160),(49,161),(50,162),(51,163),(52,164),(53,165),(54,166),(55,167),(56,168),(85,177),(86,178),(87,179),(88,180),(89,181),(90,182),(91,183),(92,184),(93,185),(94,186),(95,187),(96,188),(97,189),(98,190),(99,191),(100,192),(101,193),(102,194),(103,195),(104,196),(105,169),(106,170),(107,171),(108,172),(109,173),(110,174),(111,175),(112,176),(113,211),(114,212),(115,213),(116,214),(117,215),(118,216),(119,217),(120,218),(121,219),(122,220),(123,221),(124,222),(125,223),(126,224),(127,197),(128,198),(129,199),(130,200),(131,201),(132,202),(133,203),(134,204),(135,205),(136,206),(137,207),(138,208),(139,209),(140,210)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,94,79,172),(2,93,80,171),(3,92,81,170),(4,91,82,169),(5,90,83,196),(6,89,84,195),(7,88,57,194),(8,87,58,193),(9,86,59,192),(10,85,60,191),(11,112,61,190),(12,111,62,189),(13,110,63,188),(14,109,64,187),(15,108,65,186),(16,107,66,185),(17,106,67,184),(18,105,68,183),(19,104,69,182),(20,103,70,181),(21,102,71,180),(22,101,72,179),(23,100,73,178),(24,99,74,177),(25,98,75,176),(26,97,76,175),(27,96,77,174),(28,95,78,173),(29,126,155,210),(30,125,156,209),(31,124,157,208),(32,123,158,207),(33,122,159,206),(34,121,160,205),(35,120,161,204),(36,119,162,203),(37,118,163,202),(38,117,164,201),(39,116,165,200),(40,115,166,199),(41,114,167,198),(42,113,168,197),(43,140,141,224),(44,139,142,223),(45,138,143,222),(46,137,144,221),(47,136,145,220),(48,135,146,219),(49,134,147,218),(50,133,148,217),(51,132,149,216),(52,131,150,215),(53,130,151,214),(54,129,152,213),(55,128,153,212),(56,127,154,211)]])
82 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | + | + | - | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | Q8 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | Dic14 | C4○D28 | D4×D7 | D4⋊2D7 |
kernel | C24.7D14 | C14.C42 | C2×Dic7⋊C4 | C2×C4⋊Dic7 | C2×C23.D7 | C14×C22⋊C4 | C2×Dic7 | C2×C28 | C22×C14 | C2×C22⋊C4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 4 | 2 | 2 | 3 | 6 | 6 | 3 | 12 | 12 | 12 | 6 | 6 |
Matrix representation of C24.7D14 ►in GL6(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 11 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
10 | 17 | 0 | 0 | 0 | 0 |
16 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 27 |
0 | 0 | 0 | 0 | 1 | 28 |
5 | 17 | 0 | 0 | 0 | 0 |
7 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 5 | 0 | 0 |
0 | 0 | 7 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 | 1 |
G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,11,0,0,0,0,0,28,0,0,0,0,0,0,1,1,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[10,16,0,0,0,0,17,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,27,28],[5,7,0,0,0,0,17,24,0,0,0,0,0,0,16,7,0,0,0,0,5,13,0,0,0,0,0,0,28,28,0,0,0,0,0,1] >;
C24.7D14 in GAP, Magma, Sage, TeX
C_2^4._7D_{14}
% in TeX
G:=Group("C2^4.7D14");
// GroupNames label
G:=SmallGroup(448,483);
// by ID
G=gap.SmallGroup(448,483);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,701,344,254,387,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=d*c=c*d,f^2=c,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^13>;
// generators/relations